Systematic Enumeration of High Symmetry Molecules by Means of Unit Subduced Cycle Indices with and without Chirality Fittingness

Shinsaku Fujita

Research Laboratories, Ashigara, Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa 250-01 (Received June 30, 1989)

A novel method of enumerating isomers is presented by using adamantane as a parent skeleton. This method is based on unit subduced cycle indices with and without chirality fittingness, the indices being derived from the subduction of coset representations. The chirality fittingness, which is determined by examining the relationship between a point group and its subgroup, controls the mode of substitution by achiral and chiral substituents. The method provides detailed enumerations concerning symmetries and molecular formulas, whereas Pólya's theorem takes only the latter into consideration.

An attractive problem in the field of molecular symmetry is how to realize a chiral (or achiral) molecule of a given symmetry. Thus, there have appeared various approaches to the synthesis of chiral or achiral molecules of a high symmetry. One of the most versatile strategies for such approaches is a vertex strategy in which the generation of new compounds is based on the substitution of an achiral skeleton with appropriate ligands. Adamantane, which has T_d symmetry, has been successfully utilized as such an achiral skeleton. For example, Nakazaki et al. have reported the synthesis of a T molecule by starting from an adamantane skeleton.

The adamantane skeleton has also attracted theoretical attention. Farina et al. have pointed out that substitution by chiral units creates molecules of a high symmetry. We ourselves have recently examined modes of substitution on the adamantane skeleton; chiral substituents, in addition to achiral ones, should be considered in order to realize all of the subsymmetries of T_d . Although this approach has manually revealed which subsymmetries are allowed or forbidden, there have emerged no systematic rationalization of the results.

Other approaches treating an adamantane skeleton have been devoted to combinatorial enumerations of isomers. These enumerations stem from Pólya's theorem, which counts isomers with respect only to molecular formulas. In other words, they have taken no account of the symmetries of the isomers.

Hässelbarth reported a method of enumeration concerning symmetry. This method, however, disregarded the concrete forms of the coset representations that control the symmetry of a parent skeleton. Brocas proposed an alternative method, in which a combination of double cosets and framework groups made it possible to enumerate isomers concerning their symmetries. Mead compared these methods using common problems of enumerations.

The above discussions indicate the necessity of systematic enumerations of isomers with respect not only to their molecular formulas but also to their symmetries. In a previous paper, we have discussed the edge strategy and indicated the importance of the subduction of coset representations.¹⁰⁾ We have also provided a new method of isomer enumeration based upon unit subduced cycle indices (USCIs).¹¹⁾ As a continuation of that work, the present paper deals with an extension of the method and its application to an enumeration by the vertex strategy, with achiral and chiral substituents allowed.

Construction of the Mark Table of T_d Point Group. The mark table of a group can be based on Burnside's textbook.¹²⁾ However, such tables have been prepared for only a limited number of point groups. This section illustrates the constructions of coset representations (CRs) of T_d and of its mark table.

The \mathbf{T}_d group is decomposed to the corresponding cosets by any subgroup (Appendix 1). For example, if we select \mathbf{C}_{3v} as the subgroup, we obtain

$$\mathbf{T}_{d} = \mathbf{C}_{3v} + \mathbf{C}_{3v}C_{2(1)} + \mathbf{C}_{3v}C_{2(2)} + \mathbf{C}_{3v}C_{2(3)}$$

as a decomposition. In accord with this decomposition, let us consider a set of cosets: $\{C_{3v}, C_{3v}C_{2(1)}, C_{3v}C_{2(2)}, C_{3v}C_{2(3)}\}$. When we assign integers 1 to 4 to these cosets, we obtain a set of integers $\{1, 2, 3, 4\}$. These cosets are multiplied by $C_{3(1)}$ to give these equations:

$$\begin{aligned} \mathbf{C}_{3v}C_{3(1)} &= \mathbf{C}_{3v}, \\ \mathbf{C}_{3v}C_{2(1)}C_{3(1)} &= \mathbf{C}_{3v}C_{2(3)}, \\ \mathbf{C}_{3v}C_{2(2)}C_{3(1)} &= \mathbf{C}_{3v}C_{2(1)}, \text{ and} \\ \mathbf{C}_{3v}C_{2(3)}C_{3(1)} &= \mathbf{C}_{3v}C_{2(2)}. \end{aligned}$$

The resulting cosets afford the set, {1, 4, 2, 3}. Hence, we obtain a permutation represented by

$$\pi_{C_{3(1)}} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} = (1)(2 & 4 & 3),$$

which corresponds to the $C_{3(1)}$ operation. This manipulation is repeated over all the operations of \mathbf{T}_d to give the corresponding coset representation, $\mathbf{T}_d(/\mathbf{C}_{3v})$, as is shown in Table 1. Each element of the CR is expressed in the form of a product of cycles. The degree of

Table 1. $T_d(/C_{3\nu})$ and the Subgroups

T	TC //C)					S	ubgrou	ps				
\mathbf{T}_{d}	$\mathbf{T}_{\mathrm{d}}(/\mathbf{C}_{3\mathrm{v}})$	\mathbf{C}_1	\mathbb{C}_2	\mathbf{C}^{s}	\mathbb{C}_3	S ₄	$\mathbf{D_2}$	\mathbf{C}_{2v}	C _{3v}	\mathbf{D}_{2d}	T	\mathbf{T}_{d}
I	(1)(2)(3)(4)	x	x	x	x	x	x	x	x	x	x	x
$C_{2(1)}$	$(1 \ 2)(3 \ 4)$		x			x	x			x	x	X
$C_{2(2)}$	$(1 \ 3)(2 \ 4)$						x			x	x	x
$C_{2(3)}$	$(1 \ 4)(2 \ 3)$						x	x		X	x	X
$C_{3(1)}$	$(1)(2 \ 4 \ 3)$	•	•	•	x	•	•	•	x	•	x	X
$C_{3(3)}$	$(1 \ 2 \ 3)(4)$										x	X
$C_{3(2)}$	$(1 \ 3 \ 4)(2)$										x	X
$C_{3(4)}$	$(1 \ 4 \ 2)(3)$										x	x
$C_{3(1)}^3$	$(1)(2\ 3\ 4)$	•	•	•	x	•	•	•	x	•	x	X
$C_{3(4)}^2$	$(1\ 2\ 3)(3)$										x	X
$C_{3(3)}^2$	$(1 \ 3 \ 2)(4)$										x	X
$C_{3(1)}^{3}$ $C_{3(3)}^{2}$ $C_{3(3)}^{2}$ $C_{3(2)}^{2}$	$(1 \ 4 \ 3)(2)$										x	x
$\sigma_{ m d(1)}$	$(1)(2\ 3)(4)$	•	•	x	•	•	•	x	x	x	•	x
$S_{4(3)}$	$(1\ 2\ 4\ 3)$									x		x
$S_{4(3)}^3$	$(1 \ 3 \ 4 \ 2)$									x		x
$\sigma_{\mathrm{d}(6)}$	$(1 \ 4)(2)(3)$							x		x		x
$\sigma_{ exttt{d}(2)}$	$(1)(2)(3 \ 4)$								x			x
$\sigma_{ m d(4)}$	$(1 \ 2)(3)(4)$											x
$S_{4(1)}$	$(1 \ 3 \ 2 \ 4)$					x						X
$S_{4(1)}^3$	$(1 \ 4 \ 2 \ 3)$					x						x
$\sigma_{ m d(3)}$	$(1)(2 \ 4)(3)$								x			x
$S_{4(2)}^3$	$(1 \ 2 \ 3 \ 4)$											x
$\sigma_{\mathrm{d}(5)}$	$(1 \ 3)(2)(4)$											X
S ₄₍₂₎	$(1 \ 4 \ 3 \ 2)$											x
	Mark	4	0	2	1	0	0	0	1	0	0	0

Table 2. Mark Table of T_d

$i \setminus j$	\mathbf{C}_1	\mathbf{C}_2	Cs	C ₃	S ₄	\mathbf{D}_2	\mathbf{C}_{2v}	C _{3v}	\mathbf{D}_{2d}	T	T_d
$T_d(/C_1)$	24	0	0	0	0	0	0	0	0	0	0
$\mathbf{T}_{\mathrm{d}}(/\mathbf{C}_{2})$	12	4	0	0	0	0	0	0	0	0	0
$\mathbf{T}_{d}(/\mathbf{C}_{s})$	12	0	2	0	0	0	0	0	0	0	0
$\mathbf{T}_{d}(/\mathbf{C}_{3})$	8	0	0	2	0	0	0	0	0	0	0
$\mathbf{T}_{d}(/\mathbf{S_4})$	6	2	0	0	2	0	0	0	0	0	0
$\mathbf{T}_{\mathrm{d}}(/\mathbf{D_2})$	6	6	0	0	0	6	0	0	0	0	0
$\mathbf{T}_{d}(/\mathbf{C}_{2v})$	6	2	2	0	0	0	2	0	0	0	0
$\mathbf{T}_{d}(/\mathbf{C}_{3v})$	4	0	2	1	0	0	0	1	0	0	0
$\mathbf{T}_{d}(/\mathbf{D}_{2d})$	3	3	1	0	1	3	l	0	1	0	0
$\mathbf{T}_{d}(/\mathbf{T})$	2	2	0	2	0	2	0	0	0	2	0
$\mathbf{T}_{d}(/\mathbf{T}_{d})$	1	1	1	1	1	1	1	1	1	1	1

 $\mathbf{T}_{d}(/\mathbf{C}_{3v})$ is $|\mathbf{T}_{d}|/|\mathbf{C}_{3v}|=24/6=4$. The $\mathbf{T}_{d}(/\mathbf{C}_{3v})$ symbol comes from the fact that the T_d group is divided by the C_{3v} subgroup in a geometrical sense. This fact is essential for deriving a novel concept 'chirality fittingness of an orbit' (Appendix 2). We consider each number appearing in the cycles to be a point that is either mobile (that changes to another number) or immobile (fixed) during an operation of the group. The mark of a group by a given subgroup is defined as a number of such fixed points during all of the operations due to the elements of the subgroup. The marks of the subgroups in $T_d(/C_{3v})$ are obtained by using Table 1, in which fixed points are counted over the elements marked with 'x' for each of the subgroups. Thus, we obtain the $T_d(/\mathbb{C}_{3v})$ row of marks shown at the bottom of Table 1. The other CRs can be

examined; the collection of the results gives the mark table shown in Table 2. For the present purpose, the inverse of the mark table is also important (Table 3).

Classification of Vertices of a Skeleton into Orbits.

The adamantane skeleton ($C_{10}H_{16}$) has 26 vertices, all of which can be regarded as substitution positions. Among them, the four vertices (1) marked with heavy circles construct a set of chemically equivalent positions. We call such a set *an orbit*, according to the terminology of permutation groups. In a similar way, the other vertices are classified into the respective sets (orbits) of equivalent vertices (2, 3, and 4), as is shown in Table 4. The orbits are characterized by coset representations (CRs),¹⁰⁾ each of which controls the symmetry behavior of the equivalent vertices.

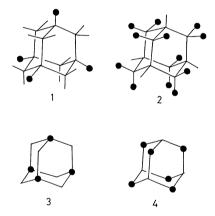
The assignment of a CR to every orbit can be

Table 2	The	Inverse	of the	Mark	Table of T	r.
rame :). 1116	mverse	or me	WAIK	rame or	- 1

	$T_d(/C_1)$	$T_d(/C_2)$	$\mathbf{T}_{d}(/\mathbf{C}_{s})$	$T_d(/C_3)$	$T_d(/S_4)$	$\mathbf{T}_{d}(/\mathbf{D}_{2})$	$T_{\text{d}}(/C_{2\text{v}})$	$T_{\text{d}}(/C_{3\text{v}})$	$T_{\rm d}(/D_{\rm 2d})$	$T_{\text{d}}(/T)$	$T_d(/T_d)$	$\sum_{i=1}^{s} \overline{m}_{ji}$
\mathbf{C}_1	1/24	0	0	0	0	0	0	0	0	0	0	1/24
C_2	-1/8	1/4	0	0	0	0	0	0	0	0	0	1/8
\mathbf{C}_{s}	-1/4	0	1/2	0	0	0	0	0	0	0	0	1/4
\mathbb{C}_3	-1/6	0	0	1/2	0	0	0	0	0	0	0	1/3
S_4	0	-1/4	0	0	1/2	0	0	0	0	0	0	1/4
$\mathbf{D_2}$	1/12	-1/4	0	0	0	1/6	0	0	0	0	0	0
C_{2v}	1/4	-1/4	-1/2	0	0	0	1/2	0	0	0	0	0
\mathbf{C}_{3v}	1/2	0	-1	-1/2	0	0	0	1	0	0	0	0
\mathbf{D}_{2d}	0	1/2	0	0	-1/2	-1/2	-1/2	0	1	0	0	0
${f T}$	1/6	0	0	-1/2	0	-1/6	0	0	0	1/2	0	0
\mathbf{T}_{d}	-1/2	0	1	1/2	0	1/2	0	-1	-1	-1/2	1	0

Table 4. Orbits of an Adamantane Skeleton

Orbit	No. of positions	FPV	Coset representation
1	4	(40210001000)	$T_{d}(/C_{3v})$
2	12	$(12\ 0\ 2\ 0\ 0\ 0\ 0\ 0\ 0\ 0)$	$\mathbf{T}_{\mathrm{d}}(/\mathbf{C}_{\mathrm{s}})$
3	4	(40210001000)	$\mathbf{T}_{d}(/\mathbf{C}_{3v})$
4	6	(62200020000)	$\mathbf{T}_{\mathrm{d}}(/\mathbf{C}_{\mathrm{2v}})$



conducted by comparing a fixed-point vector (FPV) of the orbit with a table of marks.¹¹⁾ The fixed-point vector (FPV) is defined as a row vector that collects the numbers of fixed points with respect to every subgroup. For example, a mirror plane of C_s group fixes two bridgehead methines which lie on the plane. Hence, the number of fixed points is 2 in this case. Thus, the FPVs for the orbits (1 and 3) are counted to be (4 0 2 1 0 0 0 1 0 0 0), the elements of which are aligned in the order of a set of subgroups (SSG), i.e., $\{C_1, C_2, C_s, C_3, S_4, D_2, C_{2v}, C_{3v}, D_{2d}, T, T_d\}$. Since the FPV is identical with the $T_d(/C_{3v})$ row of the mark table of the T_d group (Table 2), the orbits (1 and 3) are determined to be subject to $T_d(/C_{3v})$. Similarly, the six vertices of 2 and the twelve vertices of 4 are concluded to be subject to $\mathbf{T}_d(/\mathbf{C}_{2v})$ and $\mathbf{T}_d(/\mathbf{C}_s)$ respectively by a comparison of the FPVs (Table 4) with the data in Table 2.

Let P_A be a permutation group for the 26 vertices of adamantane. Then the above result can be formulated as follows:

$$\mathbf{P}_{A} = \mathbf{T}_{d}(/\mathbf{C}_{s}) + \mathbf{T}_{d}(/\mathbf{C}_{2v}) + 2\mathbf{T}_{d}(/\mathbf{C}_{3v}). \tag{1}$$

This result can alternatively be obtained by an algebraic method (Appendix 1). Thus, the FPV of the set of 26 vertices is (26 2 8 2 0 0 2 2 0 0 0), which is multiplied by the inverse of the mark table (Table 3)¹⁴⁾ to provide a multiplicity vector (0 0 1 0 0 0 1 2 0 0 0). This vector indicates the multiplicities of the CRs involved in:

$$\begin{split} SCR &= \{ \mathbf{T}_{d}(/\mathbf{C}_{1}),\, \mathbf{T}_{d}(/\mathbf{C}_{2}),\, \mathbf{T}_{d}(/\mathbf{C}_{s}),\, \mathbf{T}_{d}(/\mathbf{C}_{3}),\, \mathbf{T}_{d}(/\mathbf{S}_{4}),\\ &\quad \mathbf{T}_{d}(/\mathbf{D}_{2}),\, \mathbf{T}_{d}(/\mathbf{C}_{2v}),\, \mathbf{T}_{d}(/\mathbf{C}_{3v}),\, \mathbf{T}_{d}(/\mathbf{D}_{2d}),\, \mathbf{T}_{d}(/\mathbf{T}),\\ &\quad \mathbf{T}_{d}(/\mathbf{T}_{d}) \}. \end{split}$$

This result is identical with Eq. 1.

Construction of a Table of Unit Subduced Cycle Indices for the T_d Point Group. In the present enumerations, unit subduced cycle indices (USCIs) play an important role in the derivation of generating functions (Appendix 1). A collection in the form of a table of USCIs is convenient in solving problems of

enumerations. 15)

For illustrating a process of subduction, let us examine the subduction of $T_d(/C_{3v})$ by C_{2v} . If we select the element of C_{2v} from Table 1, we obtain a subduced representation:

$$\mathbf{T}_{d}(\mathbf{C}_{3v}) \downarrow \mathbf{C}_{2v} = \{(1)(2)(3)(4), (14)(23), (1)(23)(4), (14)(2)(3)\},\$$

which can be regarded as a permutation representation for the C_{2v} group. Note that $T_d(/C_{3v})$ is transitive, while $\mathbf{T}_d(/\mathbf{C}_{3v}) \downarrow \mathbf{C}_{2v}$ is intransitive. Hence, the latter is reduced into transitive coset representations of the C_{2v} group. The marks of its subgroups (C_1 , C_2 , C_s , C_s' , and C_{2v}) are obtained as (40220) by counting fixed points. This row vector is then multiplied by the inverse of the mark table of the C_{2v} group (see Eq. 1.6 of Appendix 1):

$$(\beta_{C_1} \beta_{C_2} \beta_{C_3} \beta_{C_4} \beta_{C_{2*}}) = (4\ 0\ 2\ 2\ 0) 1/4 0 0 0 0 0 0 -1/4 1/2 0 0 0 0 -1/4 0 1/2 0 0 0 -1/4 0 0 1/2 0 0 0 -1/4 0 0 0 1/2 0 0 1/2 -1/2 -1/2 -1/2 1$$

We then obtain the reduction of the subduced representation:

$$\mathbf{T}_{d}(/\mathbf{C}_{3v}) {\downarrow} \mathbf{C}_{2v} = \mathbf{C}_{2v}(/\mathbf{C}_s) + \mathbf{C}_{2v}(/\mathbf{C}_s').$$

This result allows us to ascribe a USCI (s_2^2) to the reduction, since each of the coset representations (CRs) of the right-hand side has a degree of 2. If we take account of the chirality fittingness of each CR

(Appendix 2), we obtain a_2^2 as the unit subduced cycle index with chirality fittingness. In a similar way, other USCIs with and without chirality fittingness are obtained (Table 5).

Enumeration of Isomers Based on an Adamantane Skeleton in Which Only Achiral Substituents Are **Permitted.** For the enumeration of this type, we use the USCIs described above. (We consider achiral substituents only in the discussion of this section.) The vertex strategy for producing molecules of various symmetries consists of a substitution onto the vertices of a parent skeleton with a given set of substituents. For simplicity of discussion, we will work out the orbits (1 and 2) of the adamantane skeleton. We thus consider 16 positions in all. The first problem is the counting of the isomers derived by the substitution of the 16 positions with H, X, and/or Y. Because the two orbits are subject to $T_d(/C_{3v})$ and $T_d(/C_s)$, respectively, the corresponding rows of USCIs in Table 5 are adopted to give subduced cycle indices (SCIs).

A figure inventory for substitution with H, X, and Y is represented by $s_k=1+x^k+y^k$, which is introduced into the SCIs (Appendix 1). Thus, we obtain the following FP-counting polynomials as generating functions:

for
$$C_1$$
, $(s_1^4)(s_1^{12}) = (1 + x + y)^{16}$ (316)

for
$$C_2$$
, $(s_2^2)(s_2^6) = (1 + x^2 + y^2)^8$ (38)

for
$$C_s$$
, $(s_1^2 s_2)(s_1^2 s_2^5) = (1 + x + y)^4 (1 + x^2 + y^2)^6$ (310)

for
$$\mathbb{C}_3$$
, $(s_1s_3)(s_3^4) = (1 + x + y)(1 + x^3 + y^3)^5$ (36)

for
$$S_4$$
, $(s_4)(s_4^3) = (1 + x^4 + y^4)^4$ (34)

for
$$\mathbf{S}_4$$
, $(s_4)(s_4^2) = (1 + x^4 + y^4)^4$ (34)
for \mathbf{D}_2 , $(s_4)(s_4^3) = (1 + x^4 + y^4)^4$ (34)

for
$$\mathbf{D}_2$$
, $(s_4)(s_4^3) = (1 + x^4 + y^4)^4$ (34)
for \mathbf{C}_{2v} , $(s_2^2)(s_2^2s_4^2) = (1 + x^2 + y^2)^4(1 + x^4 + y^4)^2$ (36)

Table 5. Unit Subduced Cycle Indices for Td

$i \setminus j$	\mathbf{C}_1	$\mathbf{C_2}$	\mathbf{C}_{s}	\mathbb{C}_3	S_4	\mathbf{D}_2	C_{2v}	\mathbf{C}_{3v}	\mathbf{D}_{2d}	T	$\mathbf{T}_{\mathtt{d}}$
$T_d(/C_1)$	S1 ²⁴	S2 ¹²	S2 ¹²	S3 ⁸	S4 ⁶	S4 ⁶	S4 ⁶	S6 ⁴	S8 ³	S12 ²	S24
	(b_1^{24})	(b_2^{12})	(c_2^{12})	(b_3^8)	(C_4^6)	(b_4^6)	$(C4^{6})$	(c_4^6)	(c_{8}^{3})	(b_{12}^2)	(c_{24})
$T_d(/C_2)$	S_1^{12}	$S_1^4S_2^4$	S26	S3 ⁴	S22S42	S26	S22S42	$S6^2$	S4 ³	S62	S12
	(b_1^{12})	$(b_1^4b_2^4)$	(c_{2}^{6})	(b_{3}^{4})	$(c_2{}^2c_4{}^2)$	(b_{2}^{6})	$(c_2^2c_4^2)$	(c_{6}^{2})	(c_4^3)	(b_{6^2})	(c_{12})
$\mathbf{T}_{d}(/\mathbf{C}_{s})$	S_1^{12}	S2 ⁶	$s_1^2 s_2^5$	S3 ⁴	S4 ³	S43	S22S42	<i>S</i> 3 ² <i>S</i> 6	S4S8	S12	S12
	(b_1^{12})	(b_{2}^{6})	$(a_1^2c_2^5)$	(b_{3}^{4})	(C_4^3)	(b_4^3)	$(a_2^2c_4^2)$	$(a_3^2c_6)$	(a_4c_8)	(b_{12})	(a_{12})
$T_d(/C_3)$	S18	S24	S24	$S_1^2S_3^2$	S42	$S4^2$	S42	S2S6	S8	S42	S8
	(b_1^8)	(b_{2}^{4})	(c_{2}^{4})	$(b_1^2b_3^2)$	$(C4^2)$	(b_4^2)	$(C4^2)$	$(c_{2}c_{6})$	(c_8)	(b_4^2)	(c_8)
$T_d(/S_4)$	S16	$S_1^2S_2^2$	S23	S_2^3	$S_1^2S_4$	S_2^3	S2S4	S6	S2S4	<i>S</i> 6	56
	(b_{1}^{6})	$(b_1^2b_2^2)$	(c_2^3)	(b_{3}^{2})	$(a_1^2c_4)$	(b_2^3)	$(c_{2}c_{4})$	(c_6)	$(a_{2}c_{4})$	(b_6)	(a_6)
$\mathbf{T}_{d}(/\mathbf{D}_{2})$	S16	S16	S23	S3 ²	S23	S16	S23	S6	S23	S3 ²	56
	(b_1^6)	(b_1^6)	(c_2^3)	(b_{3}^{2})	(c_2^3)	(b_1^6)	(c_2^3)	(c_6)	(c_2^3)	(b_3^2)	(c_6)
$T_d(/C_{2v})$	S16	S12S22	$s_1^2 s_2^2$	S3 ²	S2S4	S23	S12S4	<i>S</i> 3 ²	\$2\$4	S ₆	86
	(b_1^6)	$(b_1^2b_2^2)$	$(a_1^2c_2^2)$	(b_{3}^{2})	$(c_{2}c_{4})$	(b_2^3)	$(a_1^2c_4)$	(a_3^2)	$(a_{2}c_{4})$	(b_6)	(a_6)
$T_d(/C_{3v})$	S14	S22	S12S2	S1S3	S4	S4	S22	S1S3	S4	S4	54
	(b_1^4)	(b_2^2)	$(a_1^2c_2)$	(b_1b_3)	(c_4)	(b_4)	(a_{2}^{2})	(a_1a_3)	(a_4)	(b_4)	(a_4)
$\mathbf{T}_{d}(/\mathbf{D}_{2d})$	S13	S13	S1S2	S3	S1S2	S13	S1S2	S3	S1S2	<i>S</i> 3	ัรร
	(b_1^3)	(b_1^3)	(a_1c_2)	(b_3)	(a_1c_2)	(b_1^3)	(a_1c_2)	(a_3)	(a_1c_2)	(b_3)	(a_3)
$\mathbf{T}_{d}(/\mathbf{T})$	s_1^2	S_1^2	S2	S12	S2	S_1^2	S2	S2	S2	S_1^2	52
	(b_1^2)	(b_1^2)	(c_2)	(b_1^2)	(a_2)	(b_1^2)	(c_2)	(c_2)	(c_2)	(b_1^2)	(c_2)
$\mathbf{T}_d(/\mathbf{T}_d)$	s_1	s_1	s_1	s_1	s_1	<i>s</i> ₁	S 1	s_1	s_1	s_1	s_1
	(b_1)	(b_1)	(a_1)	(b_1)	(a_1)	(b_1)	(a_1)	(a_1)	(a_1)	(b_1)	(a_1)
$\sum_{i} \overline{m}_{ji}$	1/24	1/8	1/4	1/3	1/4	0	0	0	0	`o´	ÌÓ

Table 6. Enumeration of Isomers with Achiral Substituents

Index ^{a)} term	C ₁	C ₂	C _s	C ₃	S ₄	\mathbf{D}_2	C _{2v}	C _{3v}	\mathbf{D}_{2d}	T	T_d	Total
x^{16} ; y^{16}	0	0		0	0	$\frac{D_2}{0}$	0	0	0	0	1	1 otar
$x^{15}y$; xy^{15}	0	0	1	0	0	0	0	1	0	0	0	2
x^{15} ; y^{15}	Õ	Õ	1	Ö	Ö	0	Õ	ī	Õ	Ö	Õ	2
$x^{14}y^2$; x^2y^{14}	2	1	4	0	0	0	2	0	0	0	0	9
$x^{14}y$; xy^{14}	7	0	6	0	0	0	0	1	0	0	0	13
x^{14} ; y^{14}	2 17	1	4	0	0	0	2 0	0	0 0	0 0	0	9 32
$x^{13}y^3$; x^3y^{13} $x^{13}y^2$; x^2y^{13}	61	0 0	11 18	1 0	0 0	0 0	0	3 0	0	0	0	32 79
$x^{13}y$; xy^{13}	61	0	18	0	0	0	0	0	0	0	0	79
x^{13} ; y^{13}	17	0	11	1	0	0	0	3	0	0	0	32
$x^{12}y^4$; x^4y^{12}	62	4	20	1	1	0	3	2	1	0	l	95
$x^{12}y^3$; x^3y^{12}	285	0	35	1	0	0	0	3	0	0	0	324
$x^{12}y^2 ; x^2y^{12} x^{12}y ; xy^{12}$	424 285	11 0	48 35	0 1	0 0	0 0	6 0	0 3	0 0	0 0	0 0	489 324
x^{12} ; y^{12}	62	4	20	l	1	0	3	2	1	0	1	95
$x^{11}y^5$; x^5y^{11}	161	Ō	42	o	0	ŏ	0	0	Ō	0	0	203
$x^{11}y^4$; x^4y^{11}	877	0	66	0	0	0	0	0	0	0	0	943
$x^{11}y^3$; x^3y^{11}	1766	0	108	0	0	0	0	0	0	0	0	1874
$x^{11}y^2 ; x^2y^{11}$	1766	0	108	0	0	0	0	0	0	0	0	1874
$x^{11}y$; xy^{11} x^{11} ; y^{11}	877 161	0 0	66 42	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	943 203
$x^{10}y^6$; x^6y^{10}	301	11	48	3	0	0	6	4	0	0	0	373
$x^{10}y^5$; x^5y^{10}	1951	0	102	0	0	0	0	0	Ō	0	0	2053
$x^{10}y^4$; x^4y^{10}	4896	37	176	0	0	0	10	0	0	0	0	5119
$x^{10}y^3$; x^3y^{10}	6571	0	198	7	0	0	0	6	0	0	0	6782
$x^{10}y^2 ; x^2y^{10} x^{10}y ; xy^{10}$	4896 1951	37 0	176 102	0 0	0 0	0 0	10 0	0	0 0	0 0	0 0	5119 2053
$x^{10}y$; xy^{10} x^{10} ; y^{10}	301	11	48	3	0	0	6	4	0	0	0	373
$x^9y^7 ; x^7y^9$	442	0	66	3	0	0	0	4	0	0	0	515
x^9y^6 ; x^6y^9	3272	0	126	3	0	0	0	4	0	0	0	3405
x^9y^5 ; x^5y^9	9875	0	270	0	0	0	0	0	0	0	0	10145
x^9y^4 ; x^4y^9	16518	0	324 324	7 7	0 0	0 0	0 0	6 6	0 0	0 0	0	16855 16855
x^9y^3 ; x^3y^9 x^9y^2 ; x^2y^9	16518 9875	0 0	32 4 270	0	0	0	0	0	0	0	0	10855
x^9y ; xy^9	3272	0	126	3	ő	ő	ő	4	0	Ö	0	3405
x^9 ; y^9	442	0	66	3	0	0	0	4	0	0	0	515
x ⁸ y ⁸	494	12	68	0	2	0	6	0	2	0	0	584
$x^{8}y^{7}$; $x^{7}y^{8}$	4215	0	150	0	0	0	0	0	0	0	0	4365
$x^{8}y^{6}$; $x^{6}y^{8}$ $x^{8}y^{5}$; $x^{5}y^{8}$	14822 29805	63 0	316 450	0	0 0	0 0	14 0	0	0 0	0 0	0 0	15215 30255
x^8y^4 ; x^4y^8	37239	92	494	ő	5	1	15	0	2	0	0	37848
$x^{8}y^{3} ; x^{3}y^{8}$	29805	0	450	0	0	0	0	0	0	0	0	30255
$x^8y^2 ; x^2y^8$	14822	63	316	0	0	0	14	0	0	0	0	15215
x^8y ; xy^8	4215	0	150	0	0	0	0	0	0	0	0	4365
x^8 ; y^8 x^7y^7	494 16980	12 0	68 360	0 0	2 0	0 0	6 0	0 0	2 0	0 0	0 0	584 17340
$x^{1}y^{1}$ $x^{7}y^{6}$; $x^{6}y^{7}$	39778	0	514	12	0	0	0	6	0	0	0	40310
$x^{7}y^{5}$; $x^{5}y^{7}$	59730	Ö	660	0	Ŏ	ő	ŏ	Õ	Ö	Õ	ŏ	60390
x^7y^4 ; x^4y^7	59730	0	660	0	0	0	0	0	0	0	0	60390
x^7y^3 ; x^3y^7	39778	0	514	12	0	0	0	6	0	0	0	40310
$x^{7}y^{2} ; x^{2}y^{7}$ $x^{7}y ; xy^{7}$	16980 4215	0 0	360 150	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	17340 4365
$x^7y ; \ xy^7 $ $x^7 ; \ y^7$	4215 442	0	66	3	0	0	0	4	0	0	0	4303 515
$x^{6}y^{6}$	69658	130	674	12	0	0	20	6	ő	0	0	70500
$x^{6}y^{5}$; $x^{5}y^{6}$	83694	0	780	0	0	0	0	0	0	0	0	84474
$x^{6}y^{4}$; $x^{4}y^{6}$	69658	130	674	12	0	0	20	6	0	0	0	70500
x^6y^3 ; x^3y^6	39788	0 63	514	12	0	0	0	6 0	0 0	0	0	40310
$x^{6}y^{2}$; $x^{2}y^{6}$ $x^{6}y$; xy^{6}	14822 3272	63 0	316 126	0 3	0 0	0 0	14 0	0 4	0	0 0	0 0	15215 3405
x^6 ; y^6	301	11	48	3	0	0	6	4	0	0	0	373
x^5y^5	83694	0	780	Õ	0	Õ	Õ	0	Ō	Õ	0	84474
x^5y^4 ; x^4y^5	59730	0	660	0	0	0	0	0	0	0	0	60390
x^5y^3 ; x^3y^5	29805	0	450	0	0	0	0	0	0	0	0	30255
$x^{5}y^{2}$; $x^{2}y^{5}$ $x^{5}y$; xy^{5}	9875 1951	0 0	270 102	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	10145 2053
$x^{5}y$; xy^{5} x^{5} ; y^{5}	1931	0	42	0	0	0	0	0	0	0	0	2033
, y												

TT 1.1	_	/C .: 1\	
Table	n.	(Continued)	

Index ^{a)} term	\mathbf{C}_1	\mathbb{C}_2	\mathbf{C}_{s}	\mathbf{C}_3	S_4	\mathbf{D}_2	C_{2v}	\mathbf{C}_{3v}	\mathbf{D}_{2d}	T	$\mathbf{T}_{\mathtt{d}}$	Total
x ⁴ y ⁴	37239	92	494	0	5	l	15	0	2	0	0	37848
x^4y^3 ; x^3y^4	16518	0	324	7	0	0	0	6	0	0	0	16855
x^4y^2 ; x^2y^4	4896	37	176	0	0	0	10	0	0	0	0	5119
x^4y ; xy^4	877	0	66	0	0	0	0	0	0	0	0	943
x^4 ; y^4	62	4	20	1	1	0	3	2	1	0	1	95
x^3y^3	6571	0	198	7	0	0	0	6	0	0	0	6782
$x^3y^2 ; x^2y^3$	1766	0	108	0	0	0	0	0	0	0	0	1874
x^3y ; xy^3	285	0	35	1	0	0	0	3	0	0	0	324
x^3 ; y^3	17	0	11	1	0	0	0	3	0	0	0	32
x^2y^2	424	11	48	0	0	0	6	0	0	0	0	489
x^2y ; xy^2	61	0	18	0	0	0	0	0	0	0	0	79
x^2 ; y^2	2	1	4	0	0	0	2	0	0	0	0	9
xy	7	0	6	0	0	0	0	0	0	0	0	13
x ; y	0	0	1	0	0	0	0	1	0	0	0	2
1	0	0	0	0	0	0	0	0	0	0	1	1
Total	1778217	1431	28926	243	27	3	351	234	18	0	9	1809459

a) The index term $x^m y^n$ corresponds to the molecular formula: $(C_{10}H_{16-m-n}X_mY_n)$.

for
$$\mathbf{C}_{3\nu}$$
, $(s_1s_3)(s_3^2s_6) = (1+x+y)(1+x^3+y^3)^3(1+x^6+y^6)$ (35) for \mathbf{D}_{2d} , $(s_4)(s_4s_8) = (1+x^4+y^4)^2(1+x^8+y^8)$ (33)

for **T**,
$$(s_4)(s_{12}) = (1 + x^4 + y^4)(1 + x^{12} + y^{12})$$
 (32) and

for
$$\mathbf{T}_d$$
, $(s_4)(s_{12}) = (1 + x^4 + y^4)(1 + x^{12} + y^{12}).$ (32)

The left-hand side of each equation denotes an SCI for each subsymmetry, in which the first set of parentheses contains the USCI of the $\mathbf{T}_d(/\mathbf{C}_{3v})$ row, and the second, the USCI of the $\mathbf{T}_d(/\mathbf{C}_s)$ row.

The expansion of the right-hand sides of the equations gives the generating functions, in which the coefficient of the x^my^n term indicates the number of fixed points with x^my^n and the respective subsymmetry.

For the purpose of illustrating a procedure for obtaining the numbers of isomers, we deal with the case of x^8y^4 . Thus, after the expansion, we collect the resulting coefficients of the x^8y^4 term of the poly-Thereby, we obtain the FPV of x^8y^4 : FPV=(900900 420 1020 0 12 12 32 0 2 0 0). This is multiplied by the inverse (Table 3) to give a vector, (37239 92 494 0 5 1 15 0 2 0 0), which indicates the multiplicities in the order of the SSG. Thus, the C₁₀H₄X₈Y₄ isomers are classified into 37239 assymmetric (C_1) isomers, 92 isomers of C_2 subsymmetry, 494 isomers of C_s , 5 of S_4 , one isomer of D_2 , 15 of C_{2v} , and two isomers of \mathbf{D}_{2d} . Similarly, the isomers with $x^m y^n$ (which corresponds to the formula of $C_{10}H_{16-m-n}X_mY_n$) were enumerated. Table 6 lists the results, in which the intersection between $x^m y^n$ and a subsymmetry indicates the number of isomers with $C_{10}H_{16-m-n}X_mY_n$ and with the subsymmetry.

The \mathbf{D}_{2d} column of Table 6 indicates that the \mathbf{D}_{2d} isomers of the present enumeration should have molecular formulas of $C_{10}X_{12}Y_4$ (1 isomer for the $x^{12}y^4$ term), $C_{10}X_4Y_{12}$ (1 for x^4y^{12}), $C_{10}H_4X_{12}$ (1 for x^{12}), $C_{10}H_4Y_{12}$ (1 for y^{12}), $C_{10}X_8Y_8$ (2 for x^8y^8), $C_{10}H_4X_8Y_4$ (2 for x^8y^4), $C_{10}H_4X_4Y_8$ (2 for x^4y^8), $C_{10}H_8X_8$ (2 for x^8),

 $C_{10}H_8Y_8$ (2 for y^8), $C_{10}H_8X_4Y_4$ (2 for x^4y^4), $C_{10}H_{12}X_4$ (1 for x^4), or $C_{10}H_{12}Y_4$ (1 for y^4). Thus, there exist 18 \mathbf{D}_{2d} isomers in all. These results are verified by the manual enumeration depicted in Fig. 1. The present enumeration thus clarifies both the symmetry and the molecular formula of an isomer; thereby, we can easily draw a concrete structure of the isomer.

The $\mathbf{D_2}$ column of Table 6 shows that there emerge 3 molecules with the $\mathbf{D_2}$ symmetry. Figure 2 depicts these $\mathbf{D_2}$ molecules.

The **T** column of Table 6 suggests the non-existence of **T** isomers. In fact, no **T** isomers can exist if only achiral substituents are considered. It will be proved that **T** isomers are realized on the adamantane skeleton only if chiral substituents in addition to achiral ones are allowed.

A total number regarding each subsymmetry is obtained by summing up the corresponding column of Table 6. Alternatively, the total number can be calculated as a whole. We first obtain an FPV= $(43046721\ 6561\ 59049\ 729\ 81\ 81\ 729\ 243\ 27\ 9\ 9)$ by the substitution of x=y=1 into the above-mentioned FP-counting polynominals (e.g., $3^{16}=43046721$, as is shown in the rightmost parentheses). Then the FPV is multiplied by the inverse of the mark table (Table 3) to give a vector, $(1778217\ 1431\ 28926\ 243\ 27\ 3\ 351\ 234\ 18\ 0\ 9)$. This result is identical with the values shown at the bottom of Table 6, which are, in turn, derived from the direct summation.

The total number of isomer with x^my^n can alternatively be calculated by using a cycle index derived from a table of USCIs (Appendix 1). Thus, we obtain the cycle index (CI):

```
ZI(\mathbf{T}_{d}; s_{k})
= (1/24)(s_{1}^{4})(s_{1}^{12}) + (1/8)(s_{2}^{2})(s_{2}^{6}) + (1/4)(s_{1}^{2}s_{2})(s_{1}^{2}s_{2}^{5})
+ (1/3)(s_{1}s_{3})(s_{3}^{4}) + (1/4)(s_{4})(s_{4}^{3})
= (1/24)(s_{1}^{16} + 3s_{2}^{8} + 6s_{1}^{4}s_{2}^{6} + 8s_{1}s_{3}^{5} + 6s_{4}^{4}), \qquad (2)
```

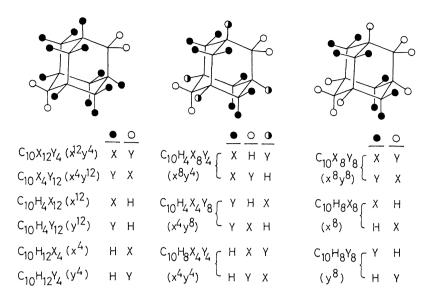


Fig. 1. Isomers of **D**_{2d} symmetry with achiral substituents on an adamantane skeleton.

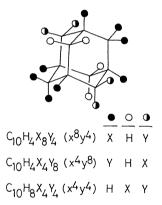


Fig. 2. Isomers of D_2 symmetry with achiral substituents on an adamantane skeleton.

which uses the rows of $T_d(/C_{3v})$ and $T_d(/C_s)$ and involves the factors (1/24, etc.) at the bottom of the table of USCIs (Table 5). The factors have been obtained by summing up every row of Table 3, as is shown in the rightmost column. Note that the factors are positive only if the corresponding subgroups are cyclic. The resulting cycle index (Eq. 2) can be proved to be identical to that derived alternatively from Pólya's theorem. ¹⁶⁾ After the introduction of the figure inventory and the expansion of the resulting equation, we obtain a generating function which counts the total number of isomers with the x^my^n term. The coefficient of the term is found in the rightmost column of Table 6.

It should be emphasized here that Pólya's theorem, which gives a result equivalent to Eq. 2, takes no account of molecular symmetry. On the other hand, the present method provides detailed results that-can be itemized regarding molecular symmetry (Table 6).

Enumeration of Isomers Permitting Achiral and Chiral Substituents. If we permit chiral substituents in addition to achiral ones, we should use *unit subduced cycle indices with chirality fittingness (USCI-CFs)* in place of the USCIs described in the previous section (Appendix 2). Table 5 also lists the USCI-CFs for the T_d symmetry. The USCI-CFs contain variables (a, b, and c) which indicate the chirality fittingness of the respective coset representation (in other words, of the corresponding orbit).

Let us work out the same adamantane skeleton except that we will now consider chiral substituents as well as achiral ones. The $\mathbf{T}_d(/\mathbf{C}_{3v})$ and $\mathbf{T}_d(/\mathbf{C}_s)$ rows of USCI-CFs (Table 5) are applied to two orbits (1 and 2), thus affording the following subduced cycle indices with chirality fittingness (SCI-CFs):

```
for C_1,
               (b_1^{12})(b_1^4) = (1+x)^{12}(1+x+r+s)^4,
                (b_2^6)(b_2^2) = (1 + x^2)^6(1 + x^2 + r^2 + s^2)^2
for C_2,
for C_3,
           (a_1^2c_2^5)(a_1^2c_2) = (1+x)^4(1+x^2)^5(1+x^2+2r_5),
for S_4,
                  (c_4^3)(c_4) = (1 + x^4)^3(1 + x^4 + 2r^2s^2),
                 (b_4^3)(b_4) = (1 + x^4)^3(1 + x^4 + r^4 + s^4),
for \mathbf{D}_2,
for C_{2\nu},
             (a_2^2c_4^2)(a_2^2) = (1 + x^2)^4(1 + x^4)^2
for C_{3v}.
             (a_3^2c_6)(a_1a_3) = (1+x)(1+x^3)^3(1+x^6),
for \mathbf{D}_{2d},
                (a_4c_8)(a_4) = (1 + x^4)^2(1 + x^8),
for T,
                 (b_{12})(b_4) = (1 + x^{12})(1 + x^4 + r^4 + s^4), and
for T_d,
                  (a_{12})(a_4) = (1 + x^{12})(1 + x^4),
```

in which the left-hand sides denote the SCI-CFs for the respective subsymmetries. Note that the first parentheses on the left-hand side of each equation contain the USCI-CF of $\mathbf{T}_d(/\mathbf{C}_{3v})$, while the second ones enclose the USCI-CF of $\mathbf{T}_d(/\mathbf{C}_s)$.

For simplicity of discussion, suppose, for example, that the \mathbf{l} orbit can take a chiral substituent (\mathbf{R}) and its

Table 7. Enumeration of Isomers with Achiral and Chiral Substituents

	Table 7.	Enume	eration of	Isomers	with A	chiral an	d Chiral	Substitu	ents		
Index term	\mathbf{C}_1	C_2	\mathbf{C}_{s}	C_3	S_4	\mathbf{D}_2	C_{2v}	\mathbf{C}_{3v}	\mathbf{D}_{2d}	T	\mathbf{T}_{d}
$x^{m}(r^{4}+s^{4})$:											
m=12; 0	0	0	0	0	0	0	0	0	0	1	0
11; 1	1	0	0	0	0	0	0	0	0	0	0
10; 2	4	3	0	0	0	0	0	0	0	0	0
9; 3	17	0	0	4	0	0	0	0	0	0	0
8; 4	38	6	0	0	0	1	0	0	0	0	0
7; 5	66	0	0	0	0	0	0	0	0	0	0
6	70	10	0	6	0	0	0	0	0	0	0
$x^{m}(r^{3}s+rs^{3})$:											
m=12; 0	0	0	0	1	0	0	0	0	0	0	0
11; 1	4	0	0	0	0	0	0	0	0	0	0
10; 2	22	0	0	0	0	0	0	0	0	0	0
9; 3	72	0	0	4	0	0	0	0	0	0	0
8; 4	165	0	0	0	0	0	0	0	0	0	0
7; 5	264	ŏ	Ŏ	Õ	Ŏ	Ö	ő	Ö	ő	ő	Ö
6	306	0	Õ	6	0	ő	0	0	0	0	0
U	300	U	U	U	U	U	U	U	U	U	U
$x^{m}(r^{3}+s^{3})$:	^	0	^	1	^	^	^	^	^	^	^
m=13; 0	0	0	0	1	0	0	0	0	0	0	0
12; 1	4	0	0	1	0	0	0	0	0	0	0
11; 2	26	0	0	0	0	0	0	0	0	0	0
10; 3	94	0	0	4	0	0	0	0	0	0	0
9; 4	237	0	0	4	0	0	0	0	0	0	0
8; 5	429	0	0	0	0	0	0	0	0	0	0
7; 6	570	0	0	6	0	0	0	0	0	0	0
$x^{m}(r^{2}s^{3})$:											
m=12; 0	0	0	0	0	1	0	0	0	0	0	0
11; 1	3	ő	ő	ő	0	ő	ő	ő	ő	0	0
10; 2	15	3	0	0	0	0	0	0	0	0	0
9; 3	55	0	0	0	0	0	0	0	0		
										0	0
8; 4	120	6	0	0	3	0	0	0	0	0	0
7; 5	198	0	0	0	0	0	0	0	0	0	0
6	226	10	0	0	0	0	0	0	0	0	0
<u></u> .											
$x^{m}(r^{2}s+sr^{2})$:											
m=13; 0	1	0	0	0	0	0	0	0	0	0	0
12; 1	13	0	0	0	0	0	0	0	0	0	0
11; 2	78	0	0	0	0	0	0	0	0	0	0
10; 3	286	0	0	0	0	0	0	0	0	0	0
9; 4	715	0	0	0	0	0	0	0	0	0	0
8; 5	1287	0	0	0	0	0	0	0	0	0	0
7; 6	1716	Ō	0	0	0	Õ	0	0	Ō	Õ	Õ
,, 0	1,10	Ü	Ü	Ŭ	Ü	·	v	Ū	·	Ū	v
. m/9 -9\.											
$x^{m}(r^{2}+s^{2})$:	0	,	^		0	0	0	0	^	^	0
m=14; 0	0	1	0	0	0	0	0	0	0	0	0
13; 1	7	0	0	0	0	0	0	0	0	0	0
12; 2	42	7	0	0	0	0	0	0	0	0	0
11; 3	182	0	0	0	0	0	0	0	0	0	0
10; 4	490	21	0	0	0	0	0	0	0	0	0
9; 5	1001	0	0	0	0	0	0	0	0	0	0
8; 6	1484	35	0	0	0	0	0	0	0	0	0
7	1716	0	0	0	0	0	0	0	0	0	0
•	0	,	,	-	-	-	-	-	-	-	-
$x^m(rs)$:											
m=14; 0	0	0	1	0	0	0	0	0	0	0	0
13; 1	5	0	4	0	0	0	0	0	0	0	0
10; 1						0				0	
12; 2	40	0	11	0	0		0	0	0		0
11; 3	170	0	24	0	0	0	0	0	0	0	0
10; 4	480	0	41	0	0	0	0	0	0	0	0
9; 5	971	0	60	0	0	0	0	0	0	0	0
8; 6	1464	0	75	0	0	0	0	0	0	0	0
7	1676	0	80	0	0	0	0	0	0	0	0

70.1	1 7	/C 1 1 \	
เลก	le 7.	(Continued)	
- uv	10 .	(Continued)	

Index term	\mathbf{C}_1	\mathbf{C}_2	\mathbf{C}_{s}	\mathbb{C}_3	S ₄	\mathbf{D}_2	\mathbf{C}_{2v}	Сзу	\mathbf{D}_{2d}	T	\mathbf{T}_{d}
$x^m(r+s)$:											
m=15; 0	0	0	0	1	0	0	0	0	0	0	0
14; 1	5	0	0	0	0	0	0	0	0	0	0
13; 2	35	0	0	0	0	0	0	0	0	0	0
12; 3	150	0	0	5	0	0	0	0	0	0	0
11; 4	455	0	0	0	0	0	0	0	0	0	0
10; 5	1001	0	0	0	0	0	0	0	0	0	0
9; 6	1665	0	0	10	0	0	0	0	0	0	0
8; 7	2145	0	0	0	0	0	0	0	0	0	0
x^m :											
m=16; 0	0	0	0	0	0	0	0	0	0	0	1
15; 1	0	0	1	0	0	0	0	l	0	0	0
14; 2	2	1	4	0	0	0	2	0	0	0	0
13; 3	17	0	11	1	0	0	0	3	0	0	0
12; 4	62	4	20	1	1	0	3	2	1	0	1
11; 5	161	0	42	0	0	0	0	0	0	0	0
10; 6	301	11	48	3	0	0	6	4	0	0	0
9; 7	442	0	66	3	0	0	0	4	0	0	0
8	494	12	68	0	2	0	6	0	2	0	0

antipode (S) in addition to the achiral ones, while the 2 orbit has two achiral substituents (H and X) only. Then, the figure inventories for this case are represented by:

$$a_k = 1 + x^k$$
 $b_k = 1 + x^k + r^k + s^k$ and
 $c_k = 1 + x^k + 2(rs)^{k/2}$ for the orbit (1), and:

$$a_k = b_k = c_k = 1 + x^k$$
 for the orbit (2).

These equations are introduced into the above SCIs and expanded into generating functions for counting the number of fixed points. Note that the $x^l r^m s^n$ and $x^{l}r^{n}s^{m}$ terms express a pair of antipodes. Hence, the coefficients of the paired terms are summed up to give the number of fixed points. If m is equal to n, the coefficient of $x^l r^m s^m$ represents the number. example, the pair of x^9r^3s and x^9rs^3 has an FPV as follows.

$$FPV = (1760\ 0\ 0\ 8\ 0\ 0\ 0\ 0\ 0\ 0)$$

This vector is multiplied by the inverse (Table 3), giving a row vector, (72 0 0 4 0 0 0 0 0 0 0). The resulting vector indicates that there exist 72 C₁ molecules and 4 C₃ molecules both of which correspond to x^9r^3s (or x^9rs^3). Table 7 summarizes the results of the present enumerations.

In order to illustrate the results of Table 7, Fig. 3 collects \mathbb{C}_3 molecules with $x^{15}r$ (or r), $x^{12}r$ (or x^3r), and $x^{9}r$ (or $x^{6}r$), in which only one antipode is selected from every racemic pair. Their numbers appear in the C₃ column of Table 7.

Figure 4 shows another type of C₃ molecules,

consisting of achiral substituents only. Their numbers also appear in the C₃ column of Table 7.

Table 7 indicates that there are two D_2 molecules in the present enumeration. These molecules have the x^8r^4 and x^4r^4 terms. The concrete forms are found in Fig. 5. Figure 5 also contains T molecules which are predicted by the systematic enumeration shown in Table 7. It should be noted that the enumeration of the previous section created no **T** isomers.

A Selection Rule for the Existence of Molecules with a Subsymmetry. The above procedure reveals which subsymmetries of a present skeleton exist if a set of substituents is given. However, the results vary with the set of substituents. This section aims at showing that USCIs and USCI-CFs are versatile tool for predicting the existence or non-existence of the subsymmetries.

Let us consider the first case in which the $T_d(/C_s)$ and $T_d(/C_{3v})$ orbits of the adamantane skeleton are replaced with achiral ligands. An index for a subsymmetry is defined as a set of USCIs punctuated with semicolons. Figure 6 depicts the subgroup lattice of T_d , which also contains indices for the subsymmetry of \mathbf{T}_{d} . The indices are obtained from the $\mathbf{T}_{d}(/\mathbf{C}_{s})$ and $\mathbf{T}_{d}(/\mathbf{C}_{3v})$ rows of Table 5.

The indices collected in Fig. 6 indicate the modes of the substitution of the respective subsymmetry. For example, the index $(s_4s_8; s_4)$ for \mathbf{D}_{2d} corresponds to the $(X_4Y_8;Z_4)$ substitution, in which Z may be the same as X or Y; however X must be different from Y. For example, all of the \mathbf{D}_{2d} molecules collected in Fig. 1 satisfy this criterion.

The discussions of the previous paragraph afford a selection rule for the allowance of subsymmetries. Thus, the **T** symmetry of Fig. 6 has an index of s_{12} ; s_4 ,

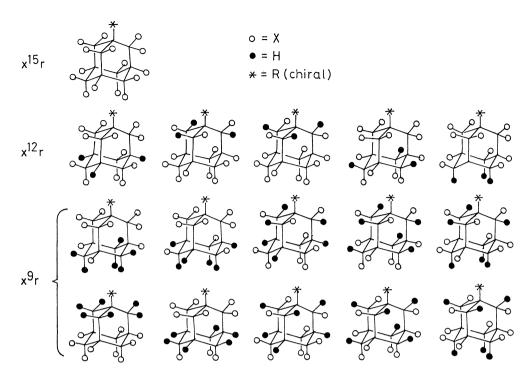


Fig. 3. Selected isomers of C₃ symmetry with chiral and achiral substituents on an adamantane skeleton.

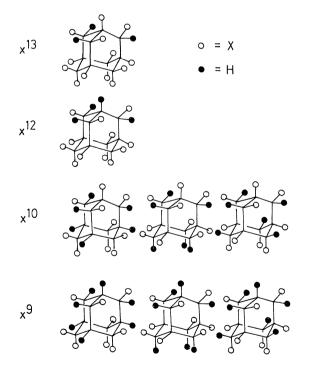


Fig. 4. Selected isomers of C₃ symmetry with achiral substituents on an adamantane skeleton.

which is identical with that of the T_d symmetry. This fact indicates that no T molecules are allowed in this series. It is possible that molecules with other subsymmetries of this series exist, since the respective indices are different from those of the supergroups.

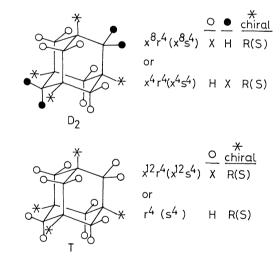


Fig. 5. Isomers of D_2 and T symmetry with achiral and chiral substituents on an adamantane skeleton.

On the other hand, if we permit additional chiral substituents, **T** molecules can exist, as is shown in Table 7.¹⁷⁾ This can be explained by the fact that the **T** symmetry has an index, b_{12} ; b_4 , which is different from that $(a_{12}; a_4)$ of the **T**_d symmetry.

Conclusion

The subduction of coset representations (SCR) and a unit subduced cycle index are introduced to enumerate isomers based on T_d skeletons. The enumeration is concerned with the molecular symmetry as well as

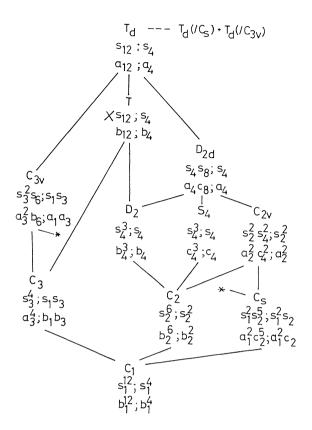


Fig. 6. Allowed and forbidden subsymmetries of an adamantane skeleton (\mathbf{T}_d). The *x*-ed subsymmetry is forbidden.

with the molecular formulas. A vertex strategy is illustrated to produce isomers of various subsymmetries. A unit subduced cycle index with chirality fittingness is also discussed in an attempt to enumerate isomers having chiral in addition to achiral substituents. Although we have restricted ourselves to the enumeration based on an adamantane skeleton, the present method can be applied to other \mathbf{T}_d skeletons as well as to those of other point groups.

Appendix 1

This appendix affords a method of enumerating isomers with achiral substituents only. The enumeration is done taken into account the constitutions of the isomers as well as their symmetries.

Coset Representations. Let **G** be a group of a finite order. Suppose that a set of subgroups is defined as

$$SSG = \{G_1, G_2, ..., G_s\},\$$

the elements of which are representatives of the respective conjugate subgroups, wherein G_1 is an identity group and G_s is equal to G. The corresponding set of coset representations (CR), i.e.,

$$SCR = \{G(/G_1), G(/G_2), ..., G(/G_s)\},\$$

is a full list of the transitive permutation representations of

the group (G).

Let P_A be a permutation representation of G. Then, P_A can be reduced in terms of:

$$\mathbf{P}_{\mathbf{A}} = \sum_{i=1}^{s} \alpha_i \mathbf{G}(/\mathbf{G}_i). \tag{1.1}$$

The multiplicities α_i are calculated by means of the following equations:

$$\mu_j = \sum_{i=1}^s \alpha_i m_{ij}$$
 (1.2)
 $(j = 1, 2, \dots, s).$

The matrix (m_{ij}) is called a *table of marks*, which is denoted as M. We define a multiplicity vector (MV) and a fixed-point vector (FPV) as:

$$MV = (\alpha_1 \ \alpha_2 \cdots \alpha_s)$$

and

$$FPV = (\mu_1 \ \mu_2 \cdots \ \mu_s).$$

Equation 1.2 is thereby transformed into

$$(\alpha_1 \ \alpha_2 \cdots \alpha_s) = (\mu_1 \ \mu_2 \cdots \mu_s) \underbrace{\begin{bmatrix} \overline{m}_{11} & \overline{m}_{12} & \cdots & \overline{m}_{1s} \\ \overline{m}_{21} & \overline{m}_{22} & \cdots & \overline{m}_{2s} \\ & \cdots & & \\ \overline{m}_{s1} & \overline{m}_{s2} & \cdots & \overline{m}_{ss} \end{bmatrix}}_{,}, (1.3)$$

wherein the matrix $(\overline{\mathbf{M}})$ is the inverse of the table of marks.

Subduction of Coset Representations and Unit Subduced Cycle Indices. Although a coset representation $G(/G_i)$ is transitive, a subduced representation (SR) by a subgroup $G_j \leq G$ is generally intransitive. Let the symbol $G(/G_i) \downarrow G_j$ denote the subduced representation. Let us consider the set of subgroups of G_i represented by:

$$SSG_{j} = \{\mathbf{G}_{1}^{(j)}, \mathbf{G}_{2}^{(j)}, \dots, \mathbf{G}_{\nu_{j}}^{(j)}\}$$

$$(j = 1, 2, \dots, s),$$
(1.4)

where the first element, $\mathbf{G}_1^{(j)}$, is an identity group, while the last one, $\mathbf{G}_{v_j^{(j)}}$, is identical with \mathbf{G}_j . Then, Eqs. 1.1 and 1.3 are converted so as to apply in the SR. The SR is thus reduced into coset representations in the light of:

$$\mathbf{G}(/\mathbf{G}_i) \downarrow \mathbf{G}_j = \sum_{k=1}^{\nu_j} \beta_k^{(ij)} \mathbf{G}_j (/\mathbf{G}_k^{(j)})$$
 (1.5)
 $(j = 1, 2, \dots, s)$

and:

$$(\beta_1^{(ij)} \beta_2^{(ij)} \cdots \beta_{\nu_j}^{(ij)}) = (\nu_1^{(ij)} \nu_2^{(ij)} \cdots \nu_{\nu_j}^{(ij)}) \overline{M}^{(j)}$$

$$(j = 1, 2, \dots, s),$$
(1.6)

where $\beta_k^{(ij)}$ is the multiplicity of $\mathbf{G}_j(/\mathbf{G}_k^{(j)})$ in the SR and where the symbol $\overline{\mathbf{M}}^{(j)}$ denotes the inverse of a table of marks for the \mathbf{G}_i group.

Equation 1.1 provides a division of the positions of a skeleton into a set of orbits, $\Delta_{i\alpha}$. Equation 1.5 indicates subdivision of the $\Delta_{i\alpha}$ orbit into a set of suborbits, $\Delta_{k\beta}^{(i\alpha)}$. Since the $\Delta_{k\beta}^{(i\alpha)}$ suborbit is subject to $\mathbf{G}_{i}(/\mathbf{G}_{k}^{(j)})$, its length is equal to the degree of $\mathbf{G}_{i}(/\mathbf{G}_{k}^{(j)})$. Hence, it is represented by:

$$d_{jk} = |\mathbf{G}_j|/|\mathbf{G}_k^{(j)}|. \tag{1.7}$$

Suppose that a variable $s_{djk}^{(i\alpha)}$ is assigned to the suborbit. Thereby, we successively introduce these new concepts, *unit subduced cycle index (USCI)*, *subduced cycle index (SCI)*, and

cycle index (CI), in terms of:

Definition 1.

(1) A unit subduced cycle index (USCI) is defined as:

$$Z(\mathbf{G}(/\mathbf{G}_{i})\downarrow\mathbf{G}_{j}; s_{djk}^{(i\alpha)}) = \prod_{k=1}^{\nu_{j}} (s_{djk}^{(i\alpha)})^{\beta_{k}^{(ij)}}$$
 (1.8) (for $i = 1, 2, \dots, s$ and $j = 1, 2, \dots, s$).

(2) A subduced cycle index (SCI) is defined as:

$$Z(\mathbf{G}_{j}; s_{d_{jk}}^{(i\alpha)}) = \prod_{i=1}^{s} \prod_{\alpha=0}^{\alpha_{i}} Z(\mathbf{G}(/\mathbf{G}_{i}) \downarrow \mathbf{G}_{j}; s_{d_{jk}}^{(i\alpha)})$$
(for $j = 1, 2, \dots, s$), (1.9)

where the term on the right-hand side is equal to 1 if α_i is equal to 0.

(3) A cycle index (CI) is defined as:

$$ZI(\mathbf{G}; s_{d_{jk}}^{(i\alpha)}) = \sum_{j=1}^{s} (\sum_{i=1}^{s} \overline{m}_{ji}) Z(\mathbf{G}_{j}; s_{d_{jk}}^{(i\alpha)}).$$

Enumeration of Isomers with Achiral Substituents Only.

Let $\Delta = \{\delta_1, \delta_2, \dots, \delta_{|\Delta|}\}$ be a domain, the elements of which are called *positions*. Consider that the m_r values of figures (X_r) selected from a codomain, $\mathbf{X} = \{X_1, X_2, \dots, X_r, \dots, X_{|\mathbf{X}|}\}$, occupy the positions of Δ . In a chemical sense, the figures are called *substituents* or *ligands*. The positions are divided and subdivided in the way described in the last section. We assign a weight, $w_{i\alpha}(X_r)$, to a figure (substituent) on the suborbit $(\Delta_{i\alpha})$. The resulting isomers have a molecular formula (or weight), W_{θ} , which is represented by a monomial of $w_{i\alpha}(X_r)$. The number of fixed points $(\rho_{\theta j})$ concerning \mathbf{G}_j and W_{θ} is obtained by a generating function as is shown in:

Lemma 1.11)

$$\sum_{\theta} \rho_{\theta j} W_{\theta} = Z(\mathbf{G}_j; s_{d_{jk}}^{(i\alpha)})$$

$$(j = 1, 2, \dots, s),$$
(1.11)

which is substituted by:

$$s_{djk}^{(i\alpha)} = \sum_{r=1}^{|\mathbf{X}|} w_{i\alpha}(X_r)^{djk}. \tag{1.12}$$

The number of isomers with W_{θ} and G_i is obtained by the use of

Theorem 1. Let $A_{\theta i}$ be the number of G_i -isomers with W_{θ} . Then,

$$\begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1s} \\
A_{21} & A_{22} & \cdots & A_{2s} \\
& \cdots & & & \\
A_{|\theta|1} & A_{|\theta|2} & \cdots & A_{|\theta|s}
\end{bmatrix} = \begin{bmatrix}
\rho_{11} & \rho_{12} & \cdots & \rho_{1s} \\
\rho_{21} & \rho_{22} & \cdots & \rho_{2s} \\
& \cdots & & & \\
\rho_{|\theta|1} & \rho_{|\theta|2} & \cdots & \rho_{|\theta|s}
\end{bmatrix} \overline{M}, (1.13)$$

where $\overline{\mathbf{M}}$ is the inverse denoted in Eq. 1.3.

Let A_{θ} be the total number of isomers with W_{θ} . This can be calculated by means of the summation:

$$A_{\theta} = \sum_{i=1}^{s} A_{\theta i},\tag{1.14}$$

in which the $A_{\theta i}$'s are calculated by means of Eq. 1.12.

The A_{θ} value is alternatively obtained by the use of **Corollary 1.**

$$\sum_{\mathbf{a}} A_{\theta} W_{\theta} = \text{ZI}(\mathbf{G}; s_{dj_k}^{(i\alpha)}), \tag{1.15}$$

which is replaced by the figure inventory (Eq. 1.12). Corollary 1 can be proved to be equivalent to Pólya's theorem. The proof will be reported elsewhere.

Appendix 2

This appendix is devoted to the enumeration of isomers with achiral and chiral substituents. The chirality fittingness of an orbit is a key concept for deriving theorems for the enumeration.

Chirality Fittingness of an Orbit. Suppose that **G** is a point group and that G_i is its subgroup. An orbit is subject to a coset representation, $G(/G_i)$, as has been shown in Appendix 1. The relationship between **G** and G_i determines the mode of substitution on the orbit according to Theorem 2. (The proof will be reported elsewhere. 11b)

Theorem 2. A coset representation, $G(/G_i)$, can act on:

- a) an orbit that takes only achiral substituents if both G and G_i contain improper rotations (an achiral part),
- b) an orbit that takes achiral as well as chiral substituents if both G and G_i contain only proper rotations (a neutral part), and
- c) an orbit that takes achiral as well as chiral ligands if G contains improper rotations, while G_i contains only proper rotations (a chiral part).

In a neutral part, the same kind of achiral or chiral substituents freely occupy the orbit. In a chiral part, however, achiral substituents are capable of occupying freely, but chiral ones fulfill the orbit in such a way that a half of the orbit involves the same kind of substituents of a given chirality, while the remaining half contains their antipodes.

Unit Subduced Cycle Indices with Chirality Fittingness. If we consider chiral substituents along with achiral ones, we should assign three types of variables to the suborbits $(\Delta_{k\beta}^{(i\alpha)})$ in agreement with their chirality fittingness. Therefore, we then use these variables:

$$a_{djk}^{(i\alpha)}$$
, $b_{djk}^{(i\alpha)}$, and $c_{djk}^{(i\alpha)}$,

for achiral, neutral, and chiral parts respectively. Thereby, we can define unit subduced cycle indices with chirality fittingness (USCI-CFs) and so forth as follows.

Definition 2.

(1) A unit subduced cycle index with chirality fittingness (USCI-CF) is defined as

$$Z(\mathbf{G}(/\mathbf{G}_i) \downarrow \mathbf{G}_j; \, \mathbf{S}_{d_i k}^{(i\alpha)}) = \prod_{k=1}^{\nu_j} (\mathbf{S}_{d_i k}^{(i\alpha)})^{\beta_k^{(ij)}}$$
(2.1)
$$(\text{for } i = 1, 2, \dots, s \text{ and } j = 1, 2, \dots, s),$$

wherein the symbol (\$\\$) denotes a, b, or c in accord with the chirality fittingness of $\mathbf{G}_i(/\mathbf{G}_k^{(j)})$.

(2) A subduced cycle index with chirality fittingness (SCI-CF) is defined as

$$Z(\mathbf{G}_{j}; \, \$_{d_{jk}}^{(i\alpha)}) = \prod_{i=1}^{s} \prod_{\alpha=0}^{\alpha_{i}} Z(\mathbf{G}(/\mathbf{G}_{i}) \downarrow \mathbf{G}_{j}; \, \$_{d_{jk}}^{(i\alpha)})$$
(2.2)
(for $j = 1, 2, \dots, s$),

where the term of the right-hand side is equal to 1 if α_i is equal to 0.

(3) A cycle index with chirality fittingness (CI-CF) is defined as

$$ZI(\mathbf{G}; \, \mathbf{\$}_{d_{jk}}^{(i\alpha)}) = \sum_{i=1}^{s} (\sum_{i=1}^{s} \overline{m}_{ji}) Z(\mathbf{G}_{j}; \, \mathbf{\$}_{d_{jk}}^{(i\alpha)}). \tag{2.3}$$

Enumeration of Isomers with Achiral and Chiral Substituents. Using these indices, we can obtain the number of

fixed points $(\rho_{\theta i})$ in terms of:

Lemma 2.

$$\sum_{\theta} \rho_{\theta j} W_{\theta} = Z(\mathbf{G}_{j}; \, \$_{d_{jk}}^{(i\alpha)})$$

$$(j = 1, 2, \, \cdots, \, s),$$
(2.4)

which is substituted by:

$$a_{dj_k}^{(i\alpha)} = \sum_{r=1}^{|\mathbf{X}|} w_{i\alpha}(X_r^{(\omega)})^{d_{jk}} \quad \text{for } \$ = a,$$

$$b_{dj_k}^{(i\alpha)} = \sum_{r=1}^{|\mathbf{X}|} w_{i\alpha}(X_r)^{d_{jk}} \quad \text{for } \$ = b,$$

$$(2.5)$$

$$b_{djk}^{(i\alpha)} = \sum_{r=1}^{|\mathbf{X}|} w_{i\alpha}(X_r)^{djk}$$
 for $\$ = b$, (2.6)

and:

$$c_{d_{jk}}^{(i\alpha)} = \sum_{r=1}^{|\mathbf{X}|} w_{i\alpha}(X_r^{(a)})^{d_{jk}} + 2\sum_{r=1}^{|\mathbf{X}|} [w_{i\alpha}(X_r^{(c)})w_{i\alpha}(X_r^{(c\#)})]^{d_{jk}/2}$$
for $\$ = c$, (2.7)

wherein the symbol $(X_r^{(a)})$ denotes an achiral substituent, the symbol (X_r) denotes any substituent, and X_r is the antipode of $X_r^{(c\#)}$.

If achiral and chiral substituents are considered, the number of isomers with W_{θ} and G_{i} is obtained by

Corollary 2. Let $B_{\theta i}$ be the number of G_{i} -isomers with W_{θ} . Then,

$$\begin{bmatrix}
\overline{B_{11}} & B_{12} & \cdots & B_{1s} \\
B_{21} & B_{22} & \cdots & B_{2s} \\
& \cdots & & & \\
B_{|\theta|1} & B_{|\theta|2} & \cdots & B_{|\theta|s}
\end{bmatrix} = \begin{bmatrix}
\rho_{11} & \rho_{12} & \cdots & \rho_{1s} \\
\rho_{21} & \rho_{22} & \cdots & \rho_{2s} \\
& \cdots & & & \\
\rho_{|\theta|1} & \rho_{|\theta|2} & \cdots & \rho_{|\theta|s}
\end{bmatrix} \overline{M}, (2.8)$$

where $\overline{\mathbf{M}}$ is the inverse denoted in Eq. 1.3.

References

- 1) a) P. E. Eaton, Tetrahedron, 35, 2189 (1979). b) M. Nakazaki, Top. Stereochem., 15, 199 (1984). c) K. Naemura, Yuki Gosei Kagaku Kyokai Shi, 45, 48 (1987).
- 2) a) V. Prelog and G. Helmchen, Helv. Chim. Acta, 55, 2581 (1972). b) V. Prelog, Chem. Brit., 4, 382 (1968). c) V. Prelog, Science, 193, 17 (1976).
 - 3) M. Nakazaki, K. Naemura, and Y. Hokura, J. Chem.

Soc., Chem. Commun., 1982, 1245.

- 4) M. Farina and C. Morandi, Tetrahedron, 30, 1819 (1974).
 - 5) S. Fujita, J. Chem. Edu., 63, 744 (1986).
- 6) a) J. S. Garavelli and J. E. Leonard, Comput. Chem., 9, 133 (1985). b) H. Dolhaine, J. S. Garvelli, and J. E. Leonard, Comput. Chem., 10, 239 (1986).
 - 7) W. Hässelbarth, Theor. Chim. Acta, 67, 339 (1985).
 - J. Brocas, J. Am. Chem. Soc., 108, 1135 (1986).
 - C. A. Mead, J. Am. Chem. Soc., 109, 2130 (1987).
- 10) a) S. Fujita, Bull. Chem. Soc. Jpn., 62, 3771 (1989). b) S. Fujita, Tetrahedron, in press.
- 11) a) S. Fujita, Theor. Chim. Acta, 76, 247 (1989). b) S. Fujita, J. Math. Chem., in press.
- 12) W. Burnside, "Theory of Groups of Finite Order," 2nd ed, Cambridge Univ. Press, Cambridge (1911). For the mathematical introduction of coset representations, see B. Baumlag and B. Chandler, "Theory and Problems of Group Theory," McGraw-Hill, New York (1968).
- 13) The FPV can be easily obtained by inspection. For the symmetry operations of T_d and the subgroups, see Ref. 5.
- 14) The summation of a row of the inverse provides a positive value only if the corresponding subgroup is cyclic; otherwise, the value vanishes.
- 15) The construction of the table of USCIs is a rather laborious task; however, the methodology of the construction is straight-forward. The tables of the USCIs for the other point groups will be reported elsewhere.
- 16) a) G. Pólya, Acta Math., 68, 145 (1937). b) G. Pólya and R. C. Read, "Combinatorial Enumeration of Groups, Graphs and Chemical Compounds," Springer-Verlag, New York (1987).
- 17) The chiral substituents should satisfy additional conditions in some criteria. See a) K. Mislow, J. Chem. Soc., Chem. Commun., 1981, 234; b) M. Nakazaki and K. Naemura, J. Org. Chem., 46, 106 (1981); and Ref. 3. In the present article, however, we consider a hypothetical, structureless substituent with chirality.